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We show that an applied charge current in a magnetic nanowire containing domain walls �DWs� results in an
interaction between DWs mediated by spin-dependent interferences of the scattered carriers. The energy and
torque associated with this interaction show an oscillatory behavior as a function of the mutual DW orienta-
tions and separations, thus affecting the DWs’ arrangements and shapes. Based on the derived DWs interaction
energy and torque we calculate DW dynamics and uncover potential applications of interacting DWs as a
tunable nanomechanical oscillator. We also discuss the effect of impurities on the DW interaction.
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I. INTRODUCTION

Domain walls �DWs�, i.e., regions of noncollinearity
separating areas of different homogenous magnetization di-
rections, are important from a fundamental and application
point of view.1–3 This is particularly the case at low dimen-
sions, as in magnetic nanowires carriers turn out to couple
strongly with DWs �Ref. 4� leading to a marked influence on
the wire’s transport properties, e.g., DW magnetoresistances
in the range of 100% were reported.5–7 As this coupling is
associated with a change in the carriers’ spin, it results in a
current-induced spin torque acting on the DW and conse-
quently in a current-induced DW motion.1,2 Based on these
facts magnetic nanowires with a series of DWs can be uti-
lized as a “racetrack DW memory.”3 The DWs’ motion is
current controlled; DWs separated by rather small distances
are addressable thus allowing for a high-memory density.

In another context it is established that strong carrier scat-
tering and interference results in long-range interactions be-
tween impurities on metal surfaces. This interaction governs
the impurities geometric arrangements and growth.8–13 The
question of whether and how the carriers’ spin-dependent
scattering mediates interactions between DWs is still out-
standing and should be addressed here. Clearly, the answer is
of vital importance for a high-density nanowire-based race-
track memory and adds a new twist on interference-mediated
interactions. We focus on the current-induced part of the cou-
pling between neighboring DWs in a magnetic nanowire.
Based on our results we identify the following mechanism of
the DWs coupling: upon scattering from the first DW a car-
rier spiral spin density builds up. This acts as a spatially
nonuniform torque on the second DW whose energetically
stable shape and position show therefore a nonuniform de-
pendence on the distance from the first DW. This is different
from the spin-torque transfer in bulk spin-valve systems14–16

or magnetic tunnel junctions17,18 insofar as in our case the
DWs spatial arrangement, in addition to the magnetization
direction, is current controlled.19 We develop a theoretical
framework to calculate the DWs current-induced effective
potential and find it oscillates with the distance of DWs and
their mutual polarization directions. This interaction we em-
ploy to study the DWs dynamics. As an application we pro-

pose the use of this different effect as a tunable, current-
driven two-DW magnetic nanooscillator20–22 with a radiation
emission dependent on the DWs positions in the various pos-
sible stable configurations.

II. THEORETICAL MODEL

We consider a magnetic nanowire with two DWs when an
electric current I is transmitted through the wire �a schematic
is shown in Fig. 1�. When the distance z0 between DWs is
larger than the phase coherence length L�, DWs act as inde-
pendent scatterers. For z0�L� the current transmission me-
diates DW coupling. For definiteness, we assume that one of
the DWs �located at z=0� is pinned, e.g., by a geometric
constriction, and concentrate on the effect of the current on
the second DW initially �i.e., for I=0� located at z=z0. For
I=0 each DW has an extension L. The transverse dimensions
of the wire should be smaller than the exchange length and
the Fermi wavelength of the carriers, a situation realizable

for magnetic semiconductors. The Hamiltonian H̄ of inde-
pendent carriers coupled �with a coupling constant J� to a

FIG. 1. �Color online� Top panel: a schematics showing the
DWs magnetization profile �thick arrows�. L is the DW width, z0

and �0 are, respectively, the DW position and orientation with re-
spect to the DW at z=0, and I is the current direction. Lower panel:
interaction energy �E�z0 ,�0� as a function of z0 and �0. Solid curve
is for z0=30 nm, the dashed is for z0=37.5 nm, and the dotted is
for z0=45 nm.
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spatially nonuniform magnetization �DWs� profile M�z� is
modeled by �we use units with �=1�

H̄ =� dza�
†�z��−

�z
2

2m
��	 − J��	 · M�z��a	�z� , �1�

where a�
† and a� are the creation and annihilation operators

of electrons with spin �. Applying a local gauge transforma-
tion T�z� �Refs. 23–25� we obtain instead of the nonuniform
magnetization a Zeeman splitting term and a spin-dependent
spatially varying potential U�	�z�, which for kFL
1 can be
treated perturbatively23–26 �kF is the Fermi wave vector�.
Note, for a sharp domain wall, i.e., for kFL�1, the formal-
ism of Ref. 27 can be adopted. T�z� is obtained from the
requirement T†�z�� ·n�z�T�z�=�z, where n is the unit vector
along M and M�z�=Mn�z�. The transformed Hamiltonian

H=T†�z�H̄T�z� reads

H =� dza�
†�z��−

�z
2

2m
��	 + U�	�z� − JM��	

z �a	�z� , �2�

with the perturbation given by

U�z� = −
1

2m
�2A�z + ��zA� + A2� , �3�

and A�z�=T†�z��zT�z� is a gauge potential. For a wire with
two DWs we parametrize the magnetization profile by the
angles �z� and ��z� �cf. Fig. 1�,

n�z� = �cos � sin , sin � sin , cos � , �4�

��z� = cos−1�tanh� z

L
��

=−�1�z� =−�2�z�

+ cos−1�tanh� z − z0

L
�� .

�5�

�See Ref. 28 and references therein.� The angle ��z� de-
scribes the relative orientation between the wall pinned at
z=0 and the other situated around z=z0. We set �1 to zero at
the first wall and �2=�0 around the second �see Fig. 1�. For
�0=� the walls are antialigned. For z0�L DWs may merge,
hence we consider the case z0�L for which we may write
U�z��U1�z�+U2�z�, where �j=1,2�

Uj�z� =
� j��z��2

8m
+ i�y� j��z�

4m
+

 j��z��z

2m
�cos � j

− i�x� j��z�
4m

+
 j��z��z

2m
�sin � j . �6�

This approach is generalizable to any number of DWs, which
are sufficiently far apart. As shown in Refs. 24–26 for a
single DW, for kFL�1, i.e., when M�z� hardly varies within
kF

−1 �adiabatic DW�, the terms in Eq. �6� proportional to 1��z�
are negligibly small and a perturbative approach is appropri-
ate for treating the electron scattering from the DWs poten-
tial Eq. �6�.29 Assuming �0�z� to be the wave function of an
independent electron with energy � in the wire without the
DWs, we find the first-order correction due to the perturba-
tion U1�z�, i.e., due to scattering from the first DWs, as

����z� = �
−�

�

dz�G��z,z��U1�z���0�z�� . �7�

The Green’s function G� corresponds to the unperturbed
Hamiltonian with U�z�=0. It is diagonal in spin space with
elements

G���z,z�� = −
im

k�

eik�	z−z�	, �8�

where k��k�
0 + i

2��

m
k�

0 for lifetimes ����F
−1 and

k�
0 = �2m��+��JM��1/2. Hence

���↑�z� = �
−�

�

dz�
−
i

8k↑
eik↑	z−z�	�1��z��2eik↑z�

−
k↑

2k↓
eik↓	z−z�	1��z�eik↑z� � , �9�

and

���↓�z� = �
−�

�

dz�

k↓

2k↑
eik↑	z−z�	�1��z��eik↓z�

−
i

8k↓
eik↓	z−z�	�1��z��2eik↓z�� , �10�

for incoming electrons of spin up and down, respectively.
The interaction energy of the two DWs due to the single

scattered state ����z�=���
0 �z�+�����z� is calculated as

�E� = �
−�

�

dz����
† �z�U2�z������z� . �11�

Summing up the contributions of all scattering states in the
energy range between �F and �F+e�� /2, for an applied
voltage e�� /2��F, we obtain the current-induced coupling
of the DWs as

�E =
e��

�2�
�E↑

v↑
+

�E↓

v↓
� , �12�

where v�=k�
0 /m is the velocity of electrons at the Fermi

level.

III. NUMERICAL EXAMPLES

Magnetic semiconductors7,30 are most favorable for a siz-
able effect, for metallic wires the one-dimensional limit is
also within reach.31 Here we use in the numerical calcula-
tions similar parameters as in Ref. 7, i.e., �F=6 nm, a mean-
free path of l=500 nm, an effective mass of m=0.5me �me is
free-electron mass�, L=�F, JM =15 meV, �F=83.7 meV,
and e��=0.1�F.32 The width of the wall may well be on the
atomic size in the presence of constrictions,5,33,34 i.e., well
below the DW lengths in bulk materials. In such a situation,
the DW interaction increases due to the strongly enhanced
DW scattering.35–38 The interaction energy �Fig. 1� depends
periodically on the DWs mutual angle �0 and distance z0,
which results in an oscillating motion of the DW along the
axis z as well as an oscillating direction of DW polarization.

Now we focus on the effect of DW scattering on the
electron-spin density, leading to a nonequilibrium spin accu-
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mulation and to a spin torque acting on the wall. Subse-
quently, we study the dynamics of the DW related to the DW
coupling.

The spin density due to the single transmitted wave of
spin � is

S��z� = ���
† �z�T�z��T†�z�����z� , �13�

and the total current-induced spin density is39

S�z� =
e�

2�
S↑

v↑
+

S↓

v↓
� . �14�

We find that the correction to the spin density follows the
magnetization profile with additional Friedel oscillations,
which are superpositions of two waves with periods kF↑

−1 and
kF↓

−1. The oscillations in the spin density are smaller in mag-
nitude than the overall spin-density profile and decay with
increasing z.

We calculate the current-induced torque acting on the sec-
ond DW at z from

�T�z,z0,�0� = −
�J

�cs
M�z,z0,�0� � �S�z,z0,�0� , �15�

where �=g�B, g is the Landé factor, and �B is the Bohr
magneton. We assumed a thin nanowire with a cross section
of �cs=100�20 nm2 as in Ref. 7. In Eq. �15� �S is the
correction to the electron-spin density due to scattering. The
calculated torque on the second DW is shown in Figs. 2 and
3, where z0=50L and M �5.56�104 A m−1 were used.30

The correction to the spin torque shows that the force upon
the DW depends strongly on their relative polarizations.

To inspect the current-induced dynamics of the DW at z
=z0, we evaluate the accumulated spin density that acts on
the DW at z=z0. The DW magnetization dynamics is then
modeled using the Landau-Lifshitz equation40

�tM = −
�J

�cs
M � S�M� . �16�

As an initial condition we assume that the magnetization
profile in the wire without electric current is described by Eq.
�5�. The results for the time dependence of the magnetization
are shown in Fig. 4 for the center of the DW, z=z0. We
should note that the relative orientation of the walls at the

start of motion does play a role in the type of motion we see.
Here we present it for an arbitrary configuration. As we
move away from the center of the DW, the relative orienta-
tion becomes increasingly irrelevant. At z=z0+L the motion
is the same regardless of the value of �0.

Analyzing different magnetization components, we find
their motions have different frequencies and different forms.
No lateral movement or permanent distortion of the DW is
observed; we see only oscillations. At the edge of the DW
wall there are small rotations of the magnetization, regard-
less of the initial conditions. If we move far from the DW
then all the dynamics of the magnetization vanish.

This is in contrast to the case where we do not include the
first domain wall. In this case there is no motion near the
center of the domain wall at all. Furthermore the oscillations
in the magnetization toward the edge of the domain wall are
much slower �by several orders of magnitude� than exhibited
here.

Extending our analysis to include the effect of magnetic
anisotropy we write

�tM = −
�J

�cs
M � S�M� +

�K�

M2 M � x̂Mx. �17�

We take the anisotropy constant K�=−10, and therefore the x
axis as a hard magnetization axis. Figure 5 shows the effects
of anisotropy on the domain wall motion. The anisotropy
dampens motion in the x direction, thus exacerbating the y
and z oscillations. This is also in contrast to the case where

�Π

� Π2

0

Π
2

Π Tx

Am−1s−1

θ0

z − z0
−5L +5L

1011

0

−1011

FIG. 2. �Color online� The x component of the current-induced
spin torque, as defined in Eq. �15�, acting at the second domain wall
as a function of z and �0.
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FIG. 3. �Color online� The z component of the current-induced
spin torque around the second domain wall as a function of z and
�0.
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FIG. 4. �Color online� The time dependence of the magnetiza-
tion with the initial condition for the second wall to be at an angle
of �0=� /4 to the first wall. This is the solution to Eq. �16�. The
solid curve is the x component, dashed the y component, and dotted
the z component. Taken at the center of the domain wall.
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we ignore the first domain wall. In this case, although the
anisotropy does introduce motion around the center of the
domain wall it does not involve a decaying x component, see
Fig. 6.

IV. SUMMARY

A current through a magnetic nanowire containing DWs
results in a DW interaction mediated by the scattered charge
carriers. We developed a method for calculating the interac-
tion energy and the consequences of this coupling mecha-
nism. The DWs interaction energy oscillates as a function of
the DWs mutual orientation and distance. This has immedi-
ate consequences on how DWs rearrange upon applying a
bias voltage and on the fundamental limit of the DWs pack-
ing density. In fact, different parts of the DW oscillate at
different rates and in different ways becoming more regular,
smaller, and quicker away from the DW center. The nonequi-
librium DWs oscillations around the energy minima generate
radiation with a frequency dependent on the applied bias
voltage, DW length, and scattering strength. These param-
eters are externally tunable for utilizing the interacting DWs
as a versatile radiation source. For an experimental realiza-
tion magnetic semiconductors7,30,41–44 are favorable, our re-
sults are in the range already achievable.7 Extension to the
metallic case is straightforward, though DW lengths may not
be easily fabricated on the required scale. In this case the
results remain qualitatively similar. Furthermore anisotropy

will completely dampen any DW oscillations as motion in a
plane becomes much harder due to the much larger magne-
tization size, M =1.72�106 A m−1 for Fe.

In our numerical simulations we used parameters of a
magnetic semiconductor with relatively large electron wave-
length, ��L, and much longer mean-free path l��. The
latter can be realized in case of small density of impurities
and defects. However, magnetic semiconductors such as
GaMnAs are usually strongly disordered, and instead of a
strong inequality one may find l��. In this case, the phase
of the current-induced spin-density wave at a distance z0� l
will be affected by impurities and therefore, one can expect
that the disorder-averaged interaction between two DWs at a
distance z0 is suppressed by the factor e−z0/l. However, we
should stress that the real interaction between two DWs de-
pends only on a given realization of the disorder and there-
fore is not damped by the impurities. This effect is analogous
to the nondamping of the Ruderman-Kittel-Kasuya-Yoshida
interaction between magnetic impurities in disordered
metals.45,46 The detailed analysis of this phenomenon is be-
yond the scope of this paper.
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